Workshop on Demand Side Management in Energy Efficiency (INFRA 25625) Ankara, Turkey, 22/11/2007 - 23/11/2007

Market Transformation for Energy Efficient Appliances

'ENERGY EFFICIENCY': A RATIO BETWEEN AN OUTPUT OF PERFORMANCE, SERVICE, GOODS OR ENERGY, AND AN INPUT OF ENERGY

Market approach

DIRECTIVE 2006/32/EC on energy end-use efficiency and energy services and repealing Council Directive 93/76/EEC, Directive 2003/54/EC concerning common rules for the internal market in electricity and Directive 2003/55/EC concerning common rules for the internal market in natural gas, which provide for the possibility of using energy efficiency and demand-side management as alternatives to new supply and for environmental protection, allowing Member State authorities, inter alia, to tender for new capacity or to opt for energy efficiency and demand-side measures, including systems for white certificates.

Financial instruments for energy savings

- funds,
- subsidies,
- loans,
- tax rebates,
- third-party financing,
- energy performance contracting (normally an ESCO),
- guarantee of energy savings contracts,
- energy outsourcing
- and other related contracts used in order to cover partly or totally the initial project cost for implementing energy efficiency improvement measures;

Market tools

Energy Efficiency – direct support DIRECTIVE 2006/32/EC on energy end-use efficiency and energy services and repealing Council Directive 93/76/EEC Voluntary agreements and/or other market oriented schemes White certificates - confirming the energy savings claims of market actors as a consequence of energy efficiency

improvement measures.

Red certificates – for CHP promotion (cogeneration based on an useful heat demand)

Other

Green Certificates – for renewable energy promotion

End users tariff zones

1 April - 30 September 1 October - 31 March Peak zoneOut of peak zone8.00 - 11.00, 20.00 - 21.0011.00 - 20.00, 21.00 - 8.008.00 - 11.00, 17.00 - 21.0011.00 - 17.00, 21.00 - 8.00

Day zone 6.00 – 13.00 and 15.00 – 22.00 **Night zone** 22.00 – 6.00 and 13.00 – 15.00

Differentiation of electricity or gas prices in the time

	Tariff C12a	Tariff C12
Day price PLN/kWh	X	0,2946
Night price PLN/kWh	X	0,1905
Peak price PLN/kWh	0,3070	X
Out of peak price zł/kWh	0,2254	X
Standing charge PLN/month	8,01	8,01
Grid standing charge PLN/kW/month	4,24	4,24

1 EUR ≈ 3,65 PLN

Assessment of energy efficiency measures

Energy audit

a systematic procedure to obtain adequate knowledge of the existing energy consumption profile of a building or group of buildings, of an industrial operation and/or installation or of a private or public service, identify and quantify cost–effective energy savings opportunities, and report the findings

Energy efficiency profitability

Economic indicators SPBT – Simple Pay-**Back** Time **NPV** – Net Present Value **IRR** – Internal Rate of Return

Simple Pay-Back Time

 $Simple PaybackTime (in years) = \frac{Initial Investment}{AnnualSavings(Cash Flow)}$

Net Present Value

Present value of net cash flows used for longterm projects

$$NPV = \sum_{t=1}^{T} \frac{C_t}{(1+r)^t} - C_0$$

Where

- t the time of the cash flow
- T the total time of the project
- r the discount rate
- C_t the net cash flow (the amount of cash) at time t.
- C_0 -the capital outlay at the beginning of the investment time

Internal Rate of Return

The IRR is the annualized effective compounded return rate which can be earned on the invested capital. IRR > 0 IRR shall be at least equal bank interest rate

DSM measures

- Improvement of the electric grid's reliability
- Better balancing the electric grid
- Energy efficiency growth
- Controlling of electricity costs
- Reduction of customer peak and overall energy demand
- Conservation through both behavioral and operational changes
- Load management
- Fuel switching
- Distributed energy (incl. RES eg. PV)
- Cogeneration and heating-cooling, and
- Provide systems that encourage load shifting or load shedding during times when the electric grid is near its capacity or electric power prices are high

Thank You for attention! GERARD LIPINSKI MINISTRY OF THE ENVIRONMENT Department of Global Environmental Issues and Climate Changes

Phone/Fax: +48/22/5792 805 E-mail: Gerard.Lipinski@mos.gov.pl; ul. Wawelska 52/54,Warsaw POLAND